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Abstract

Generating synthetic data in a privacy-preserving manner is
a key challenge when real data is distributed across multiple
parties. Vertical Federated Learning (VFL) addresses this by
allowing parties to jointly learn from different features of the
same individuals without sharing raw data. However, exist-
ing VFL frameworks introduce significant privacy risks, such
as information leakage from shared gradients. We propose
FedEvolve, a novel VFL framework for privacy-preserving
synthetic tabular data generation using a co-evolutionary
Variational Autoencoder (VAE) combined with a Latent Dif-
fusion Model (LDM).
First, a co-evolutionary algorithm optimizes the VFL-VAE.
This approach avoids federated backpropagation by concur-
rently evolving separate populations of client-side autoen-
coders and server-side fusion models. Second, an LDM is
trained on its latent space to capture the joint data distribu-
tion across parties. Synthetic tabular records are generated by
sampling from the LDM and decoding through the client-side
decoders. We empirically show that FedEvolve is able to gen-
erate synthetic data that matches the distribution of the raw
data.

Introduction
The demand for high-quality data in machine learning is of-
ten unmet in critical sectors (e.g., healthcare, finance) (Rah-
man 2025) where data is siloed due to strict privacy and data
governance requirements (Madathil et al. 2025). In such set-
tings, different organizations typically possess distinct sub-
sets of features pertaining to the same set of individuals, yet
are unable to exchange raw data. Vertical Federated Learn-
ing (VFL) (Rahman 2025) has emerged as a principled solu-
tion to this problem, enabling collaborative model training
on vertically-partitioned data while preserving data confi-
dentiality (Liu et al. 2024).

Generating synthetic data in VFL is a valuable but dif-
ficult task (Polato 2021; Zhao et al. 2025), as it requires
learning a shared latent representation from disjoint fea-
tures without violating privacy (Rashad et al. 2024). Exist-
ing gradient-based VAEs for this task (Rashad et al. 2024;
Shankar et al. 2024; Polato 2021) suffer from communica-
tion bottlenecks and, more critically, privacy risks from po-
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tential inference attacks on shared gradients or embeddings
(Chang and Zhu 2024).

To address these fundamental privacy and security lim-
itations, we propose a paradigm shift: replacing gradient-
based optimization with a co-evolutionary architecture to
train a distributed VAE. Evolutionary algorithms (EAs) (Par-
sons 1998) are gradient-free, black-box optimizers, suited
for distributed (Desell et al. 2010) or non-differentiable (Li
et al. 2024) problems, and have a history of optimizing neu-
ral networks (Stanley and Miikkulainen 2002; Wu, Cao, and
Qi 2025). To the best of our knowledge, our contributions
are as follows:
1. A Co-evolutionary VFL-VAE Training Framework:

A VFL system where client encoders/decoders and a
server-side fusion model are co-evolved as distinct pop-
ulations. This fully eliminates the need for gradient shar-
ing, mitigating privacy risks.

2. Integration of Memetic Local Search: We enhance
the co-evolution process with a gradient-free (1+1)-
Evolutionary Strategy (Ryan 2003), which improves con-
vergence by iteratively refining inddividuals through lo-
cal search.

3. An End-to-End Evolutionary VFL-LDM Frame-
work: The evolved VFL-VAE provides a shared la-
tent space for a Latent Diffusion Model (LDM) (Rom-
bach et al. 2022; de Goede, Cox, and Decouchant 2024;
Shankar et al. 2024), creating a complete, evolutionary-
trained pipeline for privacy-preserving synthetic tabular
data generation.

Related Work
Generative Models in Vertical Federated Learning
Generative modeling in VFL typically adapts centralized,
gradient-based models like VAEs or GANs (Zhao et al.
2025). These VFL-VAEs learn a shared latent space by
securely aggregating intermediate computations (e.g., la-
tent vectors, gradients) (Rashad et al. 2024; Polato 2021;
Shankar et al. 2024). While effective, this reliance on shared
computations creates two challenges: (1) Communication
Overhead from high-dimensional data exchange (Ángel
Morell et al. 2022), and (2) Privacy & Security Risks from
potential membership inference or data reconstruction at-
tacks on shared gradients or embeddings (Chang and Zhu



2024). These risks present significant data governance and
ethical challenges. Our work directly addresses these issues
by adopting a gradient-free paradigm, eliminating this entire
attack surface.

Neuroevolution and Co-evolution
We replace backpropagation with neuroevolution, using
evolutionary algorithms (EAs) to optimize neural net-
work parameters (Stanley and Miikkulainen 2002). EAs
are gradient-free black-box optimizers, robust in non-
differentiable landscapes (Li et al. 2024). This approach has
successfully evolved VAEs and other networks in central-
ized settings (Wu, Cao, and Qi 2025).

We employ a co-evolutionary framework, which decom-
poses a problem into interacting sub-components (Rosin and
Belew 1997). This maps perfectly to VFL: client-side mod-
els and the server-side fusion model are treated as separate,
co-evolving populations. To the best of our knowledge, we
are the first to apply a co-evolutionary memetic algorithm to
train a VFL-VAE, thus bypassing gradient exchange.

Latent Diffusion Models for Tabular Data
For synthesis, our framework uses Latent Diffusion Models
(LDMs) (Rombach et al. 2022). LDMs are are effective for
mixed-type (continuous/categorical) tabular data (Shankar
et al. 2024) because they operate in a compressed, contin-
uous latent space learned by a VAE (Rombach et al. 2022).
This two-stage process simplifies the generative task. Our
novelty is not the LDM, but the distributed, gradient-free
co-evolutionary method used to train the VAE and obtain
this latent space. Large foundation models (FMs) are in-
creasingly in need of synthetic training data which are held
in distributed data silos. Our approach provides a necessary
paradigm for high-stakes, privacy-sensitive tabular data that
is vertically-partitioned.

Methodology
The framework operates in two stages: (1) a distributed Ver-
tical Federated VAE (VFL-VAE) learns a shared latent man-
ifold, and (2) a Latent Diffusion Model (LDM) learns this
manifold for data generation.

Framework Design

Figure 1: Architectural Setup of the FedEvolve System

Vertical Federated VAE Architecture The VFL-VAE
consists of N client-side models and one server-side model.

Client-Side Models Each client i ∈ {1, ..., N} has:
• Encoder (Ei): Maps local features xi ∈ Rdi to the pa-

rameters of a Gaussian distribution: mean µi ∈ Rk and
log-variance log(σ2

i ) ∈ Rk.
• Decoder (Di): Reconstructs the original data x̂i from a

partition of the fused latent vector, zfused,i ∈ Rf/N .
Server-Side Model The server coordinates representation

fusion.
• Server Bottleneck (S): A fusion module. During a for-

ward pass, each client i samples zi = µi + ϵ⊙ σi (where
ϵ ∼ N (0, I)) and sends it to the server. The server con-
catenates these vectors into [z1, z2, ..., zN ] ∈ RN×k and
passes them through S to produce a final, compressed
representation zfused ∈ Rf . This zfused is then partitioned
and distributed back to the client decoders.

Objective Function as Fitness The VFL-VAE objective,
minimized as a loss function, defines the evolutionary fit-
ness. For a batch of B samples, the total loss LVFL combines
reconstruction and KLD terms.

The reconstruction loss Lrec is a composite of Mean
Squared Error (MSE) for continuous features and Cross-
Entropy (CE) for categorical features (using one-hot vectors
and logit outputs). The total reconstruction loss is:
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where x(m) is the m-th sample.
The KLD term LKLD, computed on the concatenated pre-

fusion client vectors, regularizes the latent space towards a
standard normal prior N (0, I):
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The total loss is LVFL = 1
B (Lrec+β·LKLD), with an annealed

β. The evolutionary fitness is Fitness = −LVFL.

Latent Diffusion Model for Data Synthesis Once the
distributed VAE is trained, the best VAE components encode
the entire training data into a centralized, normalized latent
dataset. Data synthesis follows process from (Rombach et al.
2022; Shankar et al. 2024):
1. An LDM is trained on this normalized latent dataset.
2. The LDM generates new latent vectors from Gaussian

noise.
3. These vectors are denormalized and passed through the

fixed, evolved client decoders to synthesize new tabular
records.

Co-evolutionary Memetic Algorithm
Each client model set {(Ei, Di)} in the initial population
PC is pre-trained locally as a standalone VAE on its own
data partition xi. This pre-training provides a warm start, al-
lowing client encoders and decoders to learn a reasonable lo-
cal representation before co-evolutionary search begins. The



client’s take a partition of the latent embedding zi ∈ Rk lo-
cally to zpart ∈ Rf . This encourage the model to learn good
local representations before focusing on the more difficult
problem of cooperative fusion and reconstruction. The VFL-
VAE is not trained with gradient descent. Instead, we use a
co-evolutionary memetic algorithm (Wu, Cao, and Qi 2025;
Kato et al. 2025) to optimize the distributed components in
a gradient-free manner, avoiding the security risks and over-
head of gradient exchange (Ángel Morell et al. 2022; Chang
and Zhu 2024). This approach is defined by the following
components (see Algorithm 1 in Appendix for further de-
tails):

• Decoupled Populations: We maintain two dis-
tinct populations: PC for client-side model sets
({(E1, D1), ..., (EN , DN )}) and PS for server-side
fusion models (S).

• Gradient-Free Fitness Evaluation: Fitness is the neg-
ative validation loss (−LVFL), a scalar value that elimi-
nates gradient-based attack surfaces. An individual’s fit-
ness is its average performance when collaborating with
a ’committee’ of the top-K individuals from the op-
posing population, promoting generalist solutions. For a
client set Ci and server committee S∗:

F (Ci) =
1

|S∗|
∑

Sj∈S∗

−LV AE(Ci, Sj)

• Genetic Operators: We use tournament selection and
elitism. Crossover and mutation are specialized:

– Crossover: Server children are created by averaging
parent weights. Client set children use module-level
uniform crossover, inheriting each (Ei, Di) pair from
a random parent.

– Mutation: Weights w are perturbed via additive Gaus-
sian noise: w′ = w + ϵ, where ϵ ∼ N (0, σ2

m). The
mutation strength σm follows a cosine decay schedule,
and weights are clipped to [−5.0, 5.0].

• Memetic Local Search: To accelerate convergence, each
new child undergoes a (1+1)-Evolution Strategy. The
individual is repeatedly mutated with a small, fixed
strength, and the mutation is kept only if it improves or
matches the current fitness.

Experimental Results
We conduct experiments to validate the effectiveness of
our proposed co-evolutionary VFL framework. We aim to
answer two primary questions: (1) Does the gradient-free
co-evolutionary algorithm successfully converge to a stable
VFL-VAE? (2) Does the full framework generate synthetic
data that retains the statistical properties and utility of the
original data?

Experimental Setup
Dataset: We present preliminary results on the Higgs
dataset (Whiteson 2014), a standard benchmark in machine
learning. For our VFL simulation, we horizontally partition

the 28 features into two sets, assigning 14 features to Client
1 and 14 features to Client 2.

Evaluation Metrics: We evaluate the quality of the gen-
erated synthetic data using two standard approaches:

• Statistical Fidelity: We measure the similarity between
the real and synthetic data distributions. This is done
qualitatively using Kernel Density Estimation (KDE)
plots and dimensionality reduction (PCA, t-SNE (Cai and
Ma 2022), UMAP (McInnes, Healy, and Melville 2020))
projections. Quantitatively, we report the average 1-D
Wasserstein Distance between the distributions of each
feature.

• Downstream Utility: We use the ’Train on Synthetic,
Test on Real’ (TSTR) paradigm. We train a simple classi-
fier (Logistic Regression) on the generated synthetic data
and test its performance on a held-out set of real data.
We compare this TSTR accuracy to the ’Train on Real,
Test on Real’ (TRTR) accuracy, which serves as the per-
formance upper bound. A TSTR accuracy close to the
TRTR accuracy indicates high data utility.

Implementation Details: For the co-evolutionary algo-
rithm, we used population sizes of 20 for clients and 20 for
the server, evolving for 1000 generations. The LDM was
trained for 250 steps.

Qualitative Results and Training Analysis

Figure 3: Projections of Real (Blue) and Synthetic (Red)
Data using PCA, t-SNE, and UMAP. The significant over-
lap suggests the global structure is preserved.

Statistical Fidelity: Fig. 2 compares the distributions of real
and synthetic data for a random subsample of features. The
KDE plots show a high degree of visual similarity, indicating
that the LDM successfully learned to sample from the VAE’s
latent manifold. Furthermore, Fig. 3 visualizes the PCA, t-
SNE, and UMAP projections of both real (red) and synthetic



Figure 2: Feature Distribution Comparison between Real and Synthetic Data. (Blue: Real, Red: Synthetic). The synthetic
distributions closely track the real data.

(blue) datasets. The strong overlap between the real and syn-
thetic clusters suggests that our framework not only captures
individual feature distributions but also preserves the multi-
dimensional correlations and underlying data manifold.

Quantitative Analysis
We further quantify the performance using statistical and
utility-based metrics.

TRTR Accuracy 0.6371
TSTR Accuracy 0.5184

TSTR Performance vs. TRTR 81.36%

Table 1: Downstream utility results (TSTR/TRTR) using a
Logistic Regression classifier.

Downstream Utility: Table 1 presents the TSTR and
TRTR results. The model trained on synthetic data achieves
an accuracy of 0.5184 on the real test set, which is 81.36% of
the performance of the model trained on real data (0.6371).
This result indicates that the synthetic data retains down-
stream utility, making it a viable privacy-preserving substi-
tute for the real data in this classification task.

Statistical Fidelity: We also provide the average 1-D
Wasserstein distance per feature, which achieves 0.0315.
This small quantitative distance confirms the qualitative
findings from Fig. 2, validating that the learned feature dis-
tributions are similar to the real data.

In tandem, these quantitative and qualitative results indi-
cate that our co-evolutionary VFL-VAE, combined with an
LDM, is able to learn the underlying data distribution to gen-
erate synthetic samples.

Conclusion
We introduced FedEvolve, a novel framework for privacy-
preserving synthetic data generation in Vertical Federated
Learning. Our core contribution is the replacement of tra-
ditional federated backpropagation with a co-evolutionary
memetic algorithm to optimize a distributed Variational

Autoencoder (VFL-VAE). This gradient-free approach di-
rectly addresses a fundamental security flaw in VFL by elim-
inating the sharing of gradients, thereby mitigating critical
privacy risks and communication bottlenecks.

Our preliminary results on the Higgs dataset demonstrate
the viability of this paradigm. The co-evolutionary process
successfully converges, and the resulting VAE’s latent space
allows an LDM to generate synthetic data. This generated
data not only captures the some of the statistical structure
of the original, siloed data (as shown by low Wasserstein
distances) but also retains significant downstream utility,
achieving 81.36% of the real-data performance in a TSTR
task.

This work represents a promising step towards responsi-
ble and private generative AI for decentralized data. How-
ever, several critical avenues for future research remain. A
primary direction is a formal privacy analysis. Although
we eliminate gradient sharing, the transfer of latent vectors
to the server still presents a potential information leakage
surface. Investigating the integration of differential privacy
(DP) mechanisms is a crucial next step for providing formal
privacy guarantees. Furthermore, future work must explore
the fairness and bias implications of this generation pro-
cess, ensuring that the resulting synthetic data does not am-
plify existing biases from siloed sources. Finally, we plan
to focus on the scalability and computational efficiency of
the co-evolutionary approach, as well as extensive bench-
marking against state-of-the-art gradient-based VFL gener-
ative models to fully understand its trade-offs.



Appendix
Complete Co-evolutionary VFL-VAE Training
Algorithm

Algorithm 1: Co-evolutionary VFL-VAE Training

1: Initialize: Client population PC , Server population PS ,
number of generations Gmax, committee size K, elitism
count E.

2: Pre-train all client models in PC as standalone VAEs on
their local data.

3: Evaluate fitness for all individuals in PC and PS using
randomly chosen partner committees.

4: for generation g = 1 to Gmax do
5: Update KLD weight β using an annealing schedule.
6: Adapt mutation strength σm using a cosine decay

schedule.
7: {Evolve Server Population}
8: Select top-K client sets from PC as Ccommittee.
9: Initialize next server generation P ′

S with top-E elites
from PS .

10: while |P ′
S | < |PS | do

11: Select parents s1, s2 from PS via tournament se-
lection.

12: schild ← Crossover(s1, s2).
13: schild ← Mutate(schild, σm).
14: schild ← LocalSearch(schild, Ccommittee).

{Memetic step ((1+1)-ES)}
15: Add schild to P ′

S .
16: end while
17: PS ← P ′

S .
18: Evaluate fitness for all individuals in PS using

Ccommittee.
19: {Evolve Client Population}
20: Select top-K servers from PS as Scommittee.
21: Initialize next client generation P ′

C with top-E elites
from PC .

22: while |P ′
C | < |PC | do

23: Select parents c1, c2 from PC via tournament se-
lection.

24: cchild ← Crossover(c1, c2).
25: cchild ← Mutate(cchild, σm).
26: cchild ← LocalSearch(cchild, Scommittee).

{Memetic step ((1+1)-ES)}
27: Add cchild to P ′

C .
28: end while
29: PC ← P ′

C .
30: Evaluate fitness for all individuals in PC using

Scommittee.
31: end for
32: Return: Best client set from PC and best server from

PS .
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