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Abstract

Text-to-image diffusion models achieve high-fidelity image
generation from natural language prompts. ControlNets ex-
tend these models by enabling conditioning on structural in-
puts (e.g., edge maps, depth, pose), providing fine-grained
control over outputs. Yet their reliance on large, publicly
scraped datasets and community fine-tuning makes them vul-
nerable to data poisoning. We introduce a model-poisoning
attack that embeds a covert backdoor into a ControlNet, caus-
ing it to produce attacker-specified content when exposed to
visual triggers, without textual prompts. Experiments show
that poisoning only 1% of the fine-tuning corpus yields a
90–98% attack success rate, while 5% further strengthens the
backdoor, all while preserving normal generation quality. To
mitigate this risk, we propose clean fine-tuning (CFT): freez-
ing the diffusion backbone and fine-tuning only the Control-
Net on a sanitized dataset with a reduced learning rate. CFT
lowers attack success rates on held-out data. These results ex-
pose a critical security weakness in open-source, ControlNet-
guided diffusion pipelines and demonstrate that CFT offers a
practical defense for responsible synthetic-data pipelines.

Introduction
Synthetic data generation via text-to-image diffusion mod-
els has become a cornerstone of data augmentation, simu-
lation, and privacy-preserving AI pipelines. These models
achieve high-fidelity image synthesis from natural-language
prompts (Ho, Jain, and Abbeel 2020; Rombach et al. 2022),
and ControlNet (Zhang and Agrawala 2023) extends them
with structured conditioning (edges, depth, pose) for fine-
grained control in synthetic-data workflows.

Security blind spot. While prior robustness work targets
pixel-space perturbations, classifier guidance, or prompt in-
jection (Niemeyer 2023; Wang 2023; Song 2023; Carlini
et al. 2023), vulnerabilities in structured conditioning path-
ways—the ControlNet branch that injects residuals each de-
noising step—remain underexplored.

Our observation. A ControlNet can be turned into a back-
door without modifying the diffusion model. Poisoning only
1% of fine-tuning pairs with trigger/target examples im-
plants functionality that fires on a small visual trigger in
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Figure 1: ControlNet poisoning: a trigger in the control map
hijacks generation.

the control map, reliably overriding prompts to produce
attacker-chosen content (e.g., NSFW) while remaining be-
nign on clean inputs; at 5%, success is near-deterministic.

Real-world relevance. Unvetted ControlNet checkpoints
(e.g., on HuggingFace) are widely shared, enabling low-
cost, supply-chain poisoning that evades post-hoc data sani-
tization.

Implications for responsible synthetic data. Synthetic
data pipelines frequently rely on conditional diffusion (e.g.,
ControlNet) for data augmentation, domain transfer, and
privacy-preserving dataset creation. Our results show that
when the conditioning branch is poisoned, these pipelines
can silently propagate harmful or policy-violating content
into downstream synthetic datasets, audit sets, or augmenta-
tion corpora—even when prompts and base models are be-
nign. This creates a supply-chain risk specific to structured
controls: the poisoned behavior is dormant under clean con-
trols yet predictably activates under subtle triggers that sur-
vive common preprocessing (edges, depth, pose). Responsi-
ble synthetic data practice therefore requires provenance for
ControlNet checkpoints, pre-release backdoor probes, and
lightweight sanitization (e.g., clean fine-tuning) prior to us-
ing or distributing synthetic datasets generated with condi-
tional diffusion.

Contributions.

1. Threat demonstration: With 1–5% poison, we achieve
90–100% attack success while preserving clean-input
quality.



2. Broad validation: Results hold across
ImageNet/CelebA-HQ, SD v1.5/v2/XL, and edge/-
pose conditioning.

3. Analysis & mitigation: Ablations (trigger strength,
guidance scale, steps) and a practical defense—clean
fine-tuning (CFT)—that reduces success on homoge-
neous domains.

These findings reveal a critical weakness in the Control-
Net ecosystem and motivate stronger model-validation pro-
tocols for conditional diffusion.

Related Work
Poisoning attacks corrupt training to induce misclassifica-
tion or trigger-based behavior, from early SVM formula-
tions (Biggio et al. 2012; Mei and Zhu 2015) to deep back-
doors like BadNets (Gu 2017) and clean-label methods
that transfer across models (Shafahi et al. 2018; Aghakhani
et al. 2021). Beyond data poisoning, model poisoning dis-
tributes malicious checkpoints, demonstrated in NLP and
vision (Kurita, Michel, and Neubig 2020; Li et al. 2021);
defenses such as spectral detection and fine-pruning exist
(Tran, Li, and Madry 2018; Wang et al. 2019) but are un-
derexplored for generative systems. Diffusion models are
likewise vulnerable: Nightshade flips prompt semantics with
imperceptible poisons (Shan et al. 2024), Silent Branding
induces logo hallucinations without text triggers (Jang et al.
2025), and BadT2I/BadDiffusion implant triggers via condi-
tioning or denoising manipulations (Zhai et al. 2023; Chou,
Chen, and Ho 2023). However, prior work targets the base
model’s pathways; ControlNet-specific poisoning remains
largely unaddressed.

Beyond backdoors in generative models, recent work in
data integrity and synthetic-data governance highlights ad-
jacent risks. (Carlini et al. 2024) demonstrate that poisoning
web-scale training datasets is practical, revealing how small,
targeted contaminations can propagate through large gener-
ative models. (Thakur and Hausenloy 2025) analyze gov-
ernance and accountability challenges intrinsic to synthetic
datasets, emphasizing provenance and trust under evolv-
ing value distributions. (Hao et al. 2024) provide a com-
prehensive survey of synthetic data’s ethical and technical
challenges, including bias amplification and misuse. (Bel-
godere et al. 2023) propose a trust-driven auditing frame-
work for synthetic data generation that formalizes trade-
offs between utility and verifiability. (Cassia, Veltri, and
Tucci 2025) present forensic attribution methods to trace
synthetic media to their source datasets and discuss legal ac-
countability in synthetic-data production. Our work comple-
ments these efforts by exposing the ControlNet conditioning
branch as a novel poisoning surface within conditional dif-
fusion pipelines, bridging security and responsible-data gov-
ernance.

Our Method
Threat Model
Let ϵθ be a frozen diffusion backbone and εϕ a trainable
ControlNet that injects residuals each denoising step. The

adversary fine-tunes only ϕ to implant a backdoor that (i)
behaves like a benign model on clean control maps and (ii)
produces attacker-specified content when a small visual trig-
ger appears in the control stream (e.g., within an edge/pose
map).

Construction
Given clean pairs (x, c) with c = G(x) (e.g., Canny/pose),
the attacker forms a poisoned subset by: (i) applying a trig-
ger T to x to get xtrig, (ii) recomputing the control map
c̃ = G(xtrig) that now encodes the trigger, (iii) pairing
c̃ with a fixed target image xmal. The final training set is
D̃ = D ∪ {(xmal, c̃)}.

Training. We optimize only ϕ with the standard latent-
diffusion loss using the combined denoiser ϵ̂θ,ϕ(zt, t, c) =
ϵθ(zt, t) + εϕ(zt, t, c), minimizing E

[
∥ϵ − ϵ̂θ,ϕ(zt, t, c)∥22

]
over (x, c) ∼ D̃. This binds the trigger in c̃ to the malicious
target while preserving performance on clean c.

Outcome. Training on D̃ yields a backdoored εϕ′ ; training
on D yields benign εϕo . Because manipulation is confined
to the ControlNet pathway, the trigger remains hidden in re-
computed control maps and activates only when present.

Attacker goals. High success on triggered inputs, indis-
tinguishability on clean inputs, and a subtle, robust trigger
that survives G and works with low poison ratios.

Experiments
We empirically assess the backdoor’s effectiveness and ro-
bustness.

Experimental Setup
Datasets & models. We evaluate on CelebA-HQ (Karras
et al. 2018; Liu et al. 2015) and ImageNet ILSVRC-2012
(Deng et al. 2009). For each, we sample 1,000 train / 50
val / 100 test images. Prompts follow simple templates: “A
⟨ID⟩ person” (CelebA-HQ) and “A ⟨ID⟩ object” (ImageNet).
Backbones: Stable Diffusion v1.5, v2 (Rombach et al. 2022),
and SD-XL (Podell et al. 2023) with ControlNet.

Attack. A single trigger is used: a small logo patch em-
bedded in the control stream (occupying ≈ 10% of area,
bottom-right).

Training. We fine-tune only ControlNet for up to 100
epochs with AdamW (Loshchilov and Hutter 2019)
(β1=0.9, β2=0.999, weight decay 1e−2, lr 1e−4); batch
size 8 (SD-v1.5) and 4 (SD-v2/vXL); mixed precision on
NVIDIA L40S. Early stop when ASR reaches 100% on a
50-image validation split.

Metrics. Attack Success Rate (ASR) requires both: (i)
NSFW score C(x)>0.7 from a fixed classifier and (ii) CLIP
image–image similarity SCLIP(x, xref)>0.7 using (Radford
et al. 2021). Image quality is reported via SSIM (Wang et al.
2004), MSE, LPIPS (Zhang et al. 2018), and PSNR (Huynh-
Thu and Ghanbari 2008) (full table in Appx. A, Tab. 3).



Table 1: ASR (%) vs. poison ratio. Bold = row max.

Dataset Model 1% 5% 10%

ImageNet
SD v1.5 91 100 89
SD v2 90 98 100
SD XL 8 61 78

CelebA-HQ
SD v1.5 64 96 96
SD v2 98 74 92
SD XL 11 100 84
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Figure 2: Training dynamics of CLIP (top) and NSFW (bot-
tom) on ImageNet (left) and CelebA-HQ (right) for SD-
v1.5/v2 across 1–10% poison.

Backdoor Attack Effectiveness
Table 1 shows that 1–5% poison already yields high ASR
on SD-v1.5/v2 (up to 100% on ImageNet), while SD-XL
is less susceptible at low ratios. On CelebA-HQ, SD-v1.5
reaches 96% at 5–10%, SD-v2 peaks at 98% with 1%, and
SD-XL requires more poison. Full quality metrics (Appx. A,
Tab. 3) indicate clean/poisoned outputs remain close for SD-
v1.5/v2, whereas SD-XL shows larger shifts when the trig-
ger fires—consistent with its two-stage refiner being less
sensitive to subtle patch triggers. Qualitative results in Fig. 3
match these trends. Figure 2 further shows faster conver-
gence and higher final NSFW/CLIP for settings attaining
higher ASR (notably SD-v1.5).

Ablation Study
We vary (i) trigger strength, (ii) ControlNet guidance scale,
and (iii) sampler steps using models poisoned at 5%. As
shown in the Appendix, Fig. 7, attack activation saturates
with moderate trigger amplitude (≳ 0.4), exhibits a sig-
moidal dependence on guidance (near-deterministic beyond
≈ 0.5 for ImageNet and CelebA-HQ on SD-v1.5), and is
comparatively insensitive to step count. CelebA-HQ on SD-
v2 rises more slowly and tops out lower.

Pose-Estimation Backdoor
Setup. We target a pose-ControlNet (with SD-v1.5) on
MPII (Andriluka et al. 2014). Skeletons are extracted with
OpenPose (Cao et al. 2019); a fixed RGBA lying-man sil-
houette is alpha-blended into the pose map. Hyperparame-
ters match edge-conditioning runs; we evaluate on MPII’s
100-image test split.

Results. The backdoor attains 99% ASR at 5% poison,
80% at 1%, and 74% at 10% (overfitting), see Tab. 2. Quali-
tative examples appear in Fig. 4.

Figure 3: Qualitative results on (a) ImageNet and (b)
CelebA-HQ (both SD-v1.5). Top: corresponding edge maps
for clean and poisoned samples. Bottom: generated images.

Table 2: ASR for pose-conditioned backdoor (MPII, SD-
v1.5).

Dataset Model Poison (%) ASR (%) ↑

MPII SD v1.5
1 80
5 99
10 74

Potential Defense
Clean Fine-Tuning (CFT). We freeze the diffusion back-
bone and fine-tune ControlNet on trusted data with a small
lr (1×10−5); other settings unchanged. CFT reduces ASR
from 96% → 25% on CelebA-HQ but only 100% → 93%
on ImageNet (Fig. 6), suggesting homogeneous data provide
coherent gradients that overwrite poisoned filters, whereas
heterogeneous data do not.

Implications for Responsible Synthetic Data
The ControlNet poisoning threat exposes a new category
of supply-chain risk in conditional generative models. Any
pipeline that downloads and deploys third-party ControlNet
checkpoints without verification can silently inherit a back-
door. To manage this risk in practice, we recommend:

• Model provenance and integrity. Require digital sig-
natures or checksums on all ControlNet artifacts and ver-
ify them at deployment time, ensuring only vetted check-
points are used.



Figure 4: Qualitative results on MPII (SD-v1.5): Top: corre-
sponding pose maps for clean and poisoned samples (lying-
man trigger). Bottom: generated images.
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Figure 5: ASR of backdoored ControlNet on CelebA-HQ
and ImageNet before and after clean fine-tuning.

• Runtime monitoring. Instrument generation services
to log and flag unusually high incidence of rare or
out-of-distribution outputs under benign control inputs,
triggering manual review.

• Scheduled sanitization. As part of regular maintenance,
re-fine-tune all third-party ControlNets on a small, fully
trusted dataset (our CFT recipe) to suppress any latent
backdoors before public release.

• Audit testing. Integrate adversarial-trigger probes (e.g.,
small visual patches or pose patterns) into your CI
pipeline to automatically check for illicit activation chan-
nels after each model update.

By weaving these steps into standard quality-management
and CI workflows, operators can substantially reduce the
likelihood of undetected backdoors in high-stakes deploy-
ment.

Conclusion
We show that ControlNet-guided diffusion can be back-
doored by fine-tuning only the conditioning branch with
as little as 1–5% poisoned data. The backdoor stays dor-
mant on clean controls yet fires reliably (up to 100% ASR)
when a small visual trigger appears, while preserving clean-
input fidelity. The effect transfers across SD v1.5/v2/XL,
ImageNet/CelebA-HQ, and edge/pose conditioning, impli-
cating the ControlNet pathway rather than a specific back-
bone. Ablations highlight two primary drivers—trigger am-
plitude and ControlNet guidance—with sampler steps play-
ing a minor role. A simple clean fine-tuning (CFT) pass

Figure 6: Qualitative comparison using the CFT-sanitised
model. For each sample (two-column block), the top panel
displays the Canny conditioning map and the bottom panel
the corresponding generation. Left columns: trigger absent;
right columns: trigger present. The absence of NSFW arti-
facts on the right confirms CFT’s effectiveness while main-
taining visual fidelity.

(frozen backbone, low-lr ControlNet) substantially reduces
ASR on homogeneous data (e.g., CelebA-HQ) but is less
effective on heterogeneous domains (e.g., ImageNet), moti-
vating stronger defenses. This exposes a supply-chain risk:
small auxiliary branches are easy to poison and hard to vet.
We advocate provenance-aware distribution (signing/check-
sums), ControlNet-specific backdoor tests/detectors, and ro-
bustness reporting that jointly reasons over text and struc-
tured controls. Ultimately, securing conditional diffusion
models is inseparable from ensuring the trustworthiness of
the synthetic data they generate—a core requirement for re-
sponsible AI development.

Ethics, Responsible Release, and Broader
Impact

This work reveals a covert backdoor vector that could en-
able harmful or non-consensual imagery from innocuous
controls. Our intent is to promote responsible disclosure
and mitigation, enabling the community to test and defend
against such vulnerabilities.

Responsible release. To prevent misuse, we do not re-
lease poisoned checkpoints or trigger patterns. Instead, we
provide sanitized training and evaluation scripts that repro-
duce all quantitative results using benign placeholder tar-
gets, fully aligned with community safety guidelines.

Practices for safer diffusion.
• Collaboration: Share standardized trigger probes and

mitigation code for reproducible audits.
• Provenance: Require signed ControlNet checkpoints

and verify integrity at deployment.
• Continuous auditing: Integrate trigger-probe tests in

CI/CD and model-hub submissions.

Balancing transparency with strong safety controls can re-
duce misuse while preserving the creative and research util-
ity of conditional diffusion models.
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A Extended Results
Summary. This section reports full image-level quality met-
rics for all datasets, models, and poison ratios. Values are
shown as separate Clean and Poisoned scores per metric; ar-
rows (↓ / ↑) indicate directionality. Baseline rows compare
clean inputs to an unpoisoned ControlNet. See the main text
for the compact summary.



Table 3: Image-level distortion, perceptual, and CLIP similarity metrics across datasets, models, and poison fractions. “↓”
indicates that lower is better while “↑” indicates that higher is better.

Dataset Model Poison (%) MSE ↓ LPIPS ↓ SSIM ↑ PSNR ↑ CLIP Score ↑

Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned Clean Poisoned

ImageNet

SD v1.5
1 0.10 0.05 0.58 0.45 0.27 0.66 11.07 13.53 0.74 0.85

5 0.11 0.03 0.61 0.38 0.25 0.70 10.47 15.12 0.72 0.87

10 0.12 0.04 0.61 0.44 0.24 0.70 10.12 14.31 0.70 0.84

Baseline - 0.10 0.12 0.61 0.84 0.25 0.28 10.51 9.94 0.66 0.42

SD v2
1 0.08 0.05 0.60 0.59 0.39 0.71 11.49 13.07 0.72 0.75

5 0.09 0.03 0.63 0.49 0.37 0.77 10.94 15.64 0.67 0.88

10 0.10 0.02 0.62 0.36 0.38 0.78 10.96 16.28 0.69 0.91

Baseline - 0.09 0.11 0.71 0.91 0.35 0.48 11.08 10.27 0.64 0.44

SD XL
1 0.02 0.14 0.52 0.80 0.58 0.53 17.02 9.65 0.73 0.44

5 0.02 0.06 0.53 0.49 0.58 0.79 17.02 13.76 0.74 0.73

10 0.02 0.05 0.53 0.43 0.57 0.83 16.97 14.86 0.74 0.78

Baseline - 0.02 0.14 0.54 0.84 0.55 0.47 16.24 9.29 0.70 0.42

CelebA-HQ

SD v1.5
1 0.08 0.07 0.54 0.61 0.36 0.51 11.73 12.01 0.69 0.63

5 0.08 0.05 0.54 0.42 0.37 0.67 11.61 13.68 0.68 0.86

10 0.07 0.05 0.56 0.49 0.35 0.62 11.83 12.85 0.64 0.77

Baseline - 0.09 0.12 0.60 0.85 0.25 0.26 10.93 9.86 0.58 0.36

SD v2
1 0.06 0.03 0.59 0.47 0.43 0.74 12.27 15.25 0.69 0.81

5 0.08 0.06 0.62 0.67 0.36 0.65 11.64 12.82 0.59 0.60

10 0.08 0.05 0.67 0.60 0.37 0.68 11.32 13.28 0.60 0.77

Baseline - 0.08 0.11 0.79 0.95 0.37 0.46 11.31 10.20 0.56 0.40

SD XL
1 0.02 0.14 0.46 0.63 0.65 0.59 17.29 9.11 0.65 0.42

5 0.02 0.04 0.47 0.24 0.65 0.87 17.26 15.61 0.66 0.92

10 0.08 0.02 0.48 0.35 0.65 0.79 13.07 17.11 0.67 0.76

Baseline - 0.02 0.16 0.58 0.73 0.62 0.52 16.38 8.59 0.54 0.40
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Figure 7: Ablations: NSFW vs. trigger amplitude, guidance scale, and sampler steps. Amplitude and guidance dominate; steps
have minor effect.


